АДМИНИСТРАЦИЯ ПЕТРОПАВЛОВСКОГО РАЙОНА АЛТАЙСКОГО КРАЯ

ПОСТАНОВЛЕНИЕ

14.04. 2023 № 158

с. Петропавловское

Об утверждении актуализированной схемы теплоснабжения муниципального образования Соловьихинский сельсовет Петропавловского района Алтайского края на 2024 год.

Руководствуясь Федеральными законами от 06.10.2003 №131-ФЗ «Об общих принципах организации местного самоуправления в Российской Федерации», Постановлением Правительства РФ от 22.02.2012 г. № 154 «О требованиях к схемам теплоснабжения, порядку их разработки и утверждения», на основании Устава муниципального образования Петропавловский район Алтайского края, ПОСТАНОВЛЯЮ:

- 1. Утвердить актуализированную схему теплоснабжения муниципального образования Соловьихинский сельсовет Петропавловского района Алтайского края на период с 2022 года до 2036 года (прилагается).
- 2. Признать утратившим силу постановление Администрации Петропавловского района Алтайского края от 17.05.2022 № 200 «Об утверждении схемы теплоснабжения муниципального образования Соловьихинский сельсовет Петропавловского района Алтайского края на период с 2022 года до 2036 года».
- 3. Настоящее постановление разместить на официальном сайте Администрации Петропавловского района в информационно-телекоммуникационной сети Интернет.
 - 4. Постановление вступает в силу со дня его подписания.
- 5. Контроль за исполнением настоящего постановления возложить на заместителя главы Администрации района Ожогина А.В.

Глава района С.В. Козликин

УТВЕРЖДЕНА:

Постановлением Администрации

Петропавловского района

Алтайского края

от «14» апреля_2023 года

№ 158

СХЕМА ТЕПЛОСНАБЖЕНИЯ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ СОЛОВЬИХИНСКИЙ СЕЛЬСОВЕТ ПЕТРОПАВЛОВСКОГО РАЙОНА АЛТАЙСКОГО КРАЯ

на период с 2022 года до 2036 года

Публичные слушания проведены: «15» марта 2023 года Протокол от «15» марта 2023 года № 4

ОГЛАВЛЕНИЕ	Ст
	p.
Введение	4
І. ОБЩАЯ ЧАСТЬ	9
Глава 1. Краткая характеристика территории	9
Глава 2. Характеристика системы теплоснабжения	12
II. ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ	14
Глава 1. Существующее положение в сфере производства, передачи и потребления тепловой энергии для целей теплоснабжения	14
Часть 1. Функциональная структура теплоснабжения	14
Часть 2. Источники тепловой энергии	14
Часть 3. Тепловые сети, сооружения на них и тепловые пункты	16
Часть 4. Зона действия источников тепловой энергии	19
Часть 5. Тепловые нагрузки потребителей тепловой энергии, групп потребителей тепловой энергии в зонах действия источников тепловой энергии	24
Часть 6. Балансы тепловой мощности и тепловой нагрузки в зонах действия источ-	
ников тепловой энергии	25
Часть 7. Балансы теплоносителя	27
Часть 8. Топливные балансы источников тепловой энергии и система обеспечением	
топливом	27
Часть 9. Оценка надежности теплоснабжения	28
Часть 10. Технико-экономические показатели теплоснабжающей организации	33
Часть 11. Цены и тарифы в сфере теплоснабжения	36
Часть 12. Описание существующих и технологических проблем в системах тепло-	37
Снабжения поселения	39
Глава 2. Перспективное потребление тепловой энергии на цели теплоснабжения	39
Часть 1. Данные базового уровня потребления тепла на теплоснабжения	
Часть 2. Прогнозы приростов площади строительных фондов	39
Часть 3. Прогнозы приростов потребления тепловой энергии (мощности)	40
Глава 3. Предложения по строительству, реконструкции и техническому перевооружению источников тепловой энергии и тепловых сетей	40
III. СХЕМА ТЕПЛОСНАБЖЕНИЯ	42
Глава 1. Показатели перспективного спроса на тепловую энергию (мощность) и теп-	42
лоноситель в установленных границах территории поселения	
Глава 2. Перспективные балансы тепловой мощности источников тепловой энергии и тепловой нагрузки потребителей	42
Глава 3. Перспективные балансы теплоносителя	43
Глава 4. Предложение по строительству, реконструкции и техническому перевоору-	44
жению источников тепловой энергии	
Глава 5. Предложения по строительству и реконструкции тепловых сетей	44
Глава 6. Перспективные топливные балансы	45
Глава 7. Инвестиции в строительство, реконструкцию и техническое перевооружение	46
Глава 8. Решение об определении единой теплоснабжающей организации	46
Глава 9. Решения о распределении тепловой нагрузки между источниками тепловой	
энергии	46
Глава 10. Решения по бесхозяйным сетям	46
Библиография	47

Введение

Основой для разработки и реализации схемы теплоснабжения муниципального образования Соловьихинский сельсовет Петропавловского района Алтайского края (далее МО Соловьихинский сельсовет) до 2036 года является Федеральный закон от 27 июля 2010 года № 190-ФЗ «О теплоснабжении» (Статья 23. Организация развития систем теплоснабжения поселений, городских округов), регулирующий всю систему взаимоотношений в теплоснабжении и направленный на устойчивое и надежное снабжение тепловой энергией потребителей.

Целью разработки схемы теплоснабжения МО Соловьихинский сельсовет является обеспечение надежности теплоснабжения новых потребителей и оптимизация режимов работы проектируемых и существующих тепловых сетей.

Схема разработана в соответствии с Постановлением Правительства РФ от 22 февраля 2012 г. \mathbb{N}_2 154 «О требованиях к схемам теплоснабжения, порядку их разработки и утверждения».

Базовым годом для разработки схемы теплоснабжения являлся 2021 год.

Проектирование схем теплоснабжения населенных пунктов представляет собой комплексную проблему, от правильного решения которой во многом зависят масштабы необходимых капитальных вложений в эти системы.

Прогноз спроса на тепловую энергию основан на прогнозировании развития поселения, в первую очередь его градостроительной деятельности, определенной генеральным планом.

Схемы разрабатываются на основе анализа фактических тепловых нагрузок потребителей с учетом перспективного развития на 15 лет, структуры топливного баланса, оценки состояния существующих источников тепла и тепловых сетей и возможностей их дальнейшего использования, рассмотрения вопросов надежности, экономичности.

Обоснование решений (рекомендаций) при разработке схем теплоснабжения осуществляется на основе технико-экономического сопоставления вариантов развития системы теплоснабжения в целом и отдельных её частей (локальных зон теплоснабжения) путем оценки их сравнительной эффективности по критерию минимума суммарных дисконтированных затрат.

В последние годы, наряду с системами централизованного теплоснабжения, значительное развитие получили системы локального, децентрализованного теплоснабжения, отличающегося в выгодную сторону отсутствием потерь при транспортировке тепловой энергии.

При разработке схемы теплоснабжения использованы:

Генеральный план развития территории МО Соловьихинский сельсовет Петропавловского района Алтайского края;

«Схема территориального планирования Петропавловского муниципального района»

Правила землепользования и застройки МО Соловьихинский сельсовет Петропавловского района Алтайского края;

исполнительная документация по источникам тепла, тепловым сетям (ТС);

эксплуатационная документация (расчетные температурные графики, данные по присоединенным тепловым нагрузкам, их видам и т.д.);

конструктивные данные по видам прокладки и применяемым теплоизоляционным конструкциям, сроки эксплуатации тепловых сетей;

документы по хозяйственной и финансовой деятельности (действующие нормы и нормативы, тарифы и их составляющие, лимиты потребления, договоры на поставку топливно-энергетических ресурсов (ТЭР) и на пользование тепловой энергией, водой, данные потребления ТЭР на собственные нужды, по потерям ТЭР и т.д.);

статистическая отчетность организаций по выработке, отпуску и использовании ТЭР в натуральном и стоимостном выражении.

В работе используются следующие понятия и определения:

"Схема теплоснабжения" – документ, содержащий предпроектные материалы по обоснованию эффективного и безопасного функционирования системы теплоснабжения, ее развития с учетом правового регулирования в области энергосбережения и повышения энергетической эффективности;

"Система теплоснабжения" – совокупность взаимосвязанных источников теплоты, тепловых сетей и систем теплопотребления;

"Расчетный элемент территориального деления" – территория поселения, городского округа или ее часть, принятая для целей разработки схемы теплоснабжения в неизменяемых границах на весь срок действия схемы теплоснабжения;

"Единая теплоснабжающая организация" в системе теплоснабжения — теплоснабжающая организация, которая определяется в схеме теплоснабжения органом местного самоуправления на основании критериев и в порядке, которые установлены правилами организации теплоснабжения, утвержденными Правительством Российской Федерации;

"Тепловая энергия" – энергетический ресурс, при потреблении которого изменяются термодинамические параметры теплоносителей (температура, давление);

"Качество теплоснабжения" – совокупность установленных нормативными правовыми актами Российской Федерации и (или) договором теплоснабжения характеристик теплоснабжения, в том числе термодинамических параметров теплоносителя;

"Источник тепловой энергии (теплоты)" – устройство, предназначенное для производства тепловой энергии;

"Теплопотребляющая установка" – устройство, предназначенное для использования тепловой энергии, теплоносителя для нужд потребителя тепловой энергии;

"Тепловая сеть" – совокупность устройств (включая центральные тепловые пункты, насосные станции), предназначенных для передачи тепловой энергии, теплоносителя от источников тепловой энергии до теплопотребляющих установок;

"Котел водогрейный" — устройство, в топке которого сжигается топливо, а теплота сгорания используется для нагрева воды, находящейся под давлением выше атмосферного и используемой в качестве теплоносителя вне этого устройства;

"Котел паровой" – устройство, в топке которого сжигается топливо, а теплота сгорания используется для производства водяного пара с давлением выше атмосферного, используемого вне этого устройства;

"Индивидуальный тепловой пункт" – тепловой пункт, предназначенный для присоединения систем теплопотребления одного здания или его части;

"Центральный тепловой пункт" – тепловой пункт, предназначенный для присоединения систем теплопотребления двух и более зданий;

"Котельная" – комплекс технологически связанных тепловых энергоустановок, расположенных в обособленных производственных зданиях, встроенных, пристроенных или надстроенных помещениях с котлами, водонагревателями (в т.ч. установками нетрадиционного способа получения тепловой энергии) и котельно-вспомогательным оборудованием, предназначенный для выработки теплоты;

"Зона действия системы теплоснабжения" — территория поселения, городского округа или ее часть, границы которой устанавливаются по наиболее удаленным точкам подключения потребителей к тепловым сетям, входящим в систему теплоснабжения;

"Зона действия источника тепловой энергии" – территория поселения, городского округа или ее часть, границы которой устанавливаются закрытыми секционирующими задвижками тепловой сети системы теплоснабжения;

"Тепловая мощность (далее - мощность)" – количество тепловой энергии, которое может быть произведено и (или) передано по тепловым сетям за единицу времени;

"Тепловая нагрузка" – количество тепловой энергии, которое может быть принято потребителем тепловой энергии за единицу времени;

"Установленная мощность источника тепловой энергии" — сумма номинальных тепловых мощностей всего принятого по акту ввода в эксплуатацию оборудования, предназначенного для отпуска тепловой энергии потребителям на собственные и хозяйственные нужды;

"Располагаемая мощность источника тепловой энергии" – величина, равная установленной мощности источника тепловой энергии за вычетом объемов мощности, не реализуемой по техническим причинам, в том числе по причине снижения тепловой мощности оборудования в результате эксплуатации на продленном техническом ресурсе (снижение параметров пара перед турбиной, отсутствие рециркуляции в пиковых водогрейных котлоагрегатах и др.);

"Мощность источника тепловой энергии нетто" – величина, равная располагаемой мощности источника тепловой энергии за вычетом тепловой нагрузки на собственные и хозяйственные нужды;

"Пиковый" режим работы источника тепловой энергии – режим работы источника тепловой энергии с переменной мощностью для обеспечения изменяющегося уровня потребления тепловой энергии, теплоносителя потребителями;

"Топливно-энергетический баланс" — документ, содержащий взаимосвязанные показатели количественного соответствия поставок энергетических ресурсов на территорию муниципального образования и их потребления, устанавливающий распределение энергетических ресурсов между системами теплоснабжения, потребителями, группами потребителей и позволяющий определить эффективность использования энергетических ресурсов;

"Потребитель тепловой энергии (далее также - потребитель)" – лицо, приобретающее тепловую энергию (мощность), теплоноситель для использования на принадлежащих ему на праве собственности или ином законном основании теплопотребляющих установках либо для оказания коммунальных услуг в части горячего водоснабжения и отопления;

"Теплосетевые объекты" – объекты, входящие в состав тепловой сети и обеспечивающие передачу тепловой энергии от источника тепловой энергии до теплопотребляющих установок потребителей тепловой энергии;

"Радиус эффективного теплоснабжения" — максимальное расстояние от теплопотребляющей установки до ближайшего источника тепловой энергии в системе теплоснабжения, при превышении которого подключение теплопотребляющей установки к данной системе теплоснабжения нецелесообразно по причине увеличения совокупных расходов в системе теплоснабжения;

"Элемент территориального деления" – территория поселения, городского округа или ее часть, установленная по границам административно-территориальных единиц;

"Показатель энергоэффективности" – абсолютная или удельная величина потребления или потери энергоресурсов, установленная государственными стандартами и (или) иными нормативными техническими документами;

"Возобновляемые источники энергии" – энергия солнца, энергия ветра, энергия вод (в том числе энергия сточных вод), за исключением случаев использования такой энергии на гидроаккумулирующих электроэнергетических станциях, энергия приливов, энергия волн водных объектов, в том числе водоемов, рек, морей, океанов, геотермальная энергия с использованием природных подземных теплоносителей, низкопотенциальная тепловая энергия земли, воздуха, воды с использованием специальных теплоносителей, биомасса, включающая в себя специально выращенные для получения энергии растения, в том числе деревья, а также отходы производства и потребления, за исключением отходов, полученных в процессе использования углеводородного сырья и топлива, биогаз, газ, выделяемый отходами производства и потребления на свалках таких отходов, газ, образующийся на угольных разработках;

"Режим потребления тепловой энергии" – процесс потребления тепловой энергии, теплоносителя с соблюдением потребителем тепловой энергии обязательных характеристик этого процесса в соответствии с нормативными правовыми актами, в том числе тех-

ническими регламентами, и условиями договора теплоснабжения;

"Базовый" режим работы источника тепловой энергии" — режим работы источника тепловой энергии, который характеризуется стабильностью функционирования основного оборудования (котлов, турбин) и используется для обеспечения постоянного уровня потребления тепловой энергии, теплоносителя потребителями при максимальной энергетической эффективности функционирования такого источника;

"Пиковый" режим работы источника тепловой энергии" – режим работы источника тепловой энергии с переменной мощностью для обеспечения изменяющегося уровня потребления тепловой энергии, теплоносителя потребителями;

"Надежность теплоснабжения" — характеристика состояния системы теплоснабжения, при котором обеспечиваются качество и безопасность теплоснабжения;

"Живучесть" – способность источников тепловой энергии, тепловых сетей и системы теплоснабжения в целом сохранять свою работоспособность в аварийных ситуациях, а также после длительных (более пятидесяти четырех часов) остановок;

"Инвестиционная программа" организации, осуществляющей регулируемые виды деятельности в сфере теплоснабжения – программа финансирования мероприятий организации, осуществляющей регулируемые виды деятельности в сфере теплоснабжения, по строительству, капитальному ремонту, реконструкции и (или) модернизации источников тепловой энергии и (или) тепловых сетей в целях развития, повышения надежности и энергетической эффективности системы теплоснабжения, подключения теплопотребляющих установок потребителей тепловой энергии к системе теплоснабжения.

І. ОБЩАЯ ЧАСТЬ

Глава 1. Краткая характеристика территории

Рис. 1. Географическое положение Петропавловского района

МО Петропавловский район расположен в юго-восточной части Алтайского края. Граничит с Усть-Пристанским районом на западе и северо- западе, на юго-западе - Усть-Калманским районом, Солонешенским районом - на юге, на востоке и юго-востоке - Смо-

ленским районом, на востоке и северо- востоке - Быстороистокским районом. МО Петро- павловский район включает в себя 14 населенных пунктов в составе 9 муниципальных образований.

Площадь Петропавловского района составляет 1618 км².

Климат Петропавловского района умеренно-теплый, достаточно увлажненный с проявлением континентального характера.

Средняя температура января — 16,6°C. Температура, принимаемая для расчета тепловых характеристик — 35 °C.

Продолжительность отопительного периода составляет 213 суток. Средняя температура отопительного периода -7,6 °C, число дней с отрицательной температурой в течение суток - 163 дней (СП 131.13330.2012. Строительная климатология. СНиП 23-02-99 Актуализированная версия. Данные приняты по административному центру, Бийск-Зональная, расположенному в 84 км от с. Петропавловское).

МО Соловьихинский сельсовет расположен в Южной части Петропавловского района Алтайского края. Площадь МО Соловьихинский сельсовет составляет 173,85 км 2 .

МО Соловьихинский сельсовет граничит:

- на севере с Алексеевским сельсоветом;
- на западе с Антоньевским сельсоветом;
- на востоке с Камышенским сельсоветом;
- на юге с Солонешенским районом Алтайского края.

В состав территории МО Соловьихинский сельсовет входит единственный населенный пункт – с. Соловьиха.

Таблица 1 Сведения о количестве домовладений и численности постоянного населения МО Соловьихинский сельсовет (по состоянию на 01.01.2022 г.)

Перечень сельских населенных пунктов	Площадь, га	Количество домовладений, ед.	Численность проживающего населения, чел
с. Соловьиха	505,3	217	578

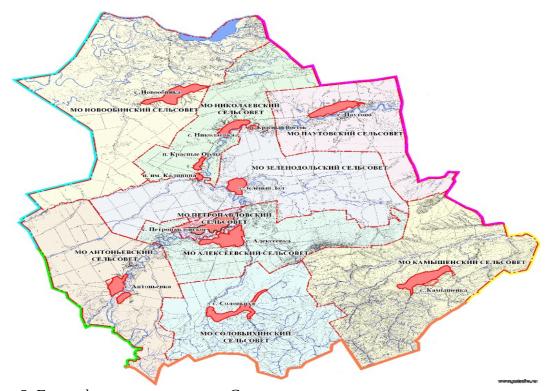


Рис. 2. Географическое положение Соловьихинского сельсовета

Краткая характеристика поселения

Показатели	Единицы измерения	Базовые значения	Значения на первый этап расчетного строка гене- рального плана	Значения на расчетный строк генерального плана
Площадь территории в границах поселения	Тыс. га	0,505	0,505	0,505
Численность населения	Чел.	578	578	578
Отапливаемая площадь, всего, в т.ч.:	тыс. м2	4,0	4,0	4,0
жилых усадебных зданий (коттеджей)	тыс. м2			-
жилых усадебных зданий	тыс. м2	-	-	=
жилых многоквартирных зданий	тыс. м2	-	-	-
общественных зданий	тыс. м2	4,0	4,0	4,0
Расчетная температура наружного воздуха для проектирования отопления и вентиляции	Град. Цельсия	-35,0	-35,0	-35,0
Средняя температура отопительного периода	Град. Цельсия	-7,6	-7,6	-7,6
ГСОП (градусо-сутки отопительного периода)	Град*сут	6394	6394	6394
Особые условия для проектирования тепловых сетей, в т.ч.:				
сейсмичность		Да	Да	Да
вечная мерзлота	_	Нет	Нет	Нет
подрабатываемые		Нет	Нет	Нет
биогенные или илистые		Нет	Нет	Нет

Производственная база в МО Соловьихинский сельсовет отсутствует.

Глава 2. Характеристика системы теплоснабжения.

В МО Соловьихинский сельсовет теплоснабжение жилищного фонда и объектов инфраструктуры осуществляется различными способами - индивидуальными источниками тепла и от централизованных источников.

Централизованными источниками теплоснабжения является одна отопительная котельная, обслуживающая здания МБОУ "Соловьихинская СОШ" и Дом культуры.

Жилищный фонд к системе центрального теплоснабжения не подключен.

Зоны, не охваченные источниками централизованного теплоснабжения, снабжаются теплом от индивидуальных источников тепловой энергии (отопительные печи, котлы на твердом топливе).

ІІ. ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ

Глава 1. Существующее положение в сфере производства, передачи и потребления тепловой энергии для целей теплоснабжения.

Часть 1. Функциональная структура теплоснабжения

В настоящее время на территории МО Соловьихинский сельсовет осуществляется централизованное теплоснабжение от одной отопительной котельной и индивидуальное теплоснабжение зданий, не присоединенных к системе централизованного теплоснабжения.

Централизованное теплоснабжение объектов МО Соловьихинский сельсовет осуществляется от сетей МП "МОКХ". В управлении предприятия на территории МО Соловьихинский сельсовет находится одна отопительная котельная, которая обслуживает объекты социальной сферы. Жилой фонд (усадебная жилая застройка) в с. Соловьиха снабжается теплом от автономных индивидуальных источников тепловой энергии (печи,

камины, котлы на твердом топливе).

Система централизованного горячего водоснабжения в МО Соловьихинский сельсовет отсутствует.

На территории МО Соловьихинский сельсовет централизованное производство и передачу тепловой энергии осуществляет МП "МОКХ", которое владеет теплогенерирующим и теплопередающим оборудованием на праве хозяйственного ведения.

С потребителями расчет производится по расчетным значениям теплопотребления (в случае отсутствия приборов учета тепловой энергии), либо по показаниям приборов учета (при их наличии у потребителей).

Отношения между МП "МОКХ" и потребителями – договорные.

Часть 2. Источники тепловой энергии

Описание источников теплоснабжения представлено в таблице 3.

Таблица З

Описание котельных

Показатели	Значения
Котельная № 3 с.	Соловьиха
а) структура основного оборудования	Котел водогрейный № 1: КВр-0,63 Котел водогрейный № 2: Алтай 5
б) параметры установленной тепловой мощности теплофикационного оборудования	Установленная тепловая мощность котельной всего: 1,23 Гкал/час
в) Ограничения тепловой мощности и параметры располагаемой тепловой мощности	Ограничения тепловой мощности вызваны длительной эксплуатацией котельного оборудования и снижением КПД котельного оборудования до 60 %. Располагаемая тепловая мощность составляет 1,02 Гкал/час
г) объем потребления тепловой энергии и теплоносителя на собственные и хозяйственные нужды, собственное потребление и потери в тепловых сетях совместного использования	Собственное потребление тепловой энергии и потери в тепловых сетях составляют 27,849 Гкал/год
д) дата последнего капитального ремонта	Данные о последнем капитальном ремонте котельной отсутствуют
е) схема выдачи тепловой мощности, структура теплофикационных установок.	Источник комбинированной выработки тепловой и электрической энергии отсутствует
ж) способ регулирования отпуска тепловой энергии от источника тепловой энергии с обоснованием выбора графика изменения температур теплоносителя	Регулирование отпуска тепловой энергии осуществляется по температурному графику 95/70 °C в зависимости от температуры наружного воздуха
з) среднегодовая нагрузка оборудования	Среднегодовая тепловая нагрузка составляет 0,15 Гкал/час, что составляет 14,7 % от располагаемой мощности
и) способы учета тепла, отпущенного в тепловые сети	Учет тепловой энергии, отпускаемой в сеть от котельной, отсутствует
к) статистика отказов и восстановлений оборудования источников тепловой энергии	Статистика отказов и восстановлений оборудования источников тепловой энергии отсутствует
л) Предписания надзорных органов по запрещению дальнейшей эксплуатации источников тепловой энергии	Предписания надзорных органов по запрещению дальнейшей эксплуатации источников тепловой энергии отсутствуют

Часть 3. Тепловые сети, сооружения на них и тепловые пункты

Таблица 4

Описание тепловых сетей с. Соловьиха

, NT	Наименова	ние участка	ение	ій диа- мм	l, M	золяци- матери- и	ладки	зода в атацию ладки)	coв pa- J,	глуби- кения опро- , м
N _Ω π/π	Начало	Конец	Назнач	Наружны метр,	Длина,	Теплоизс онный ма ал	Тип прок	Год ввс эксплуат (перекла	Число часс боты, ч	Средняя 1 на залож оси труб водов
1	2	3	4	5	6	7	8	9	10	11
			Тепло	вая сеть от	котельно	й № 3				
1	1	2	подающий	50	115,0	мин. вата	подземная	2016	5328	1,5
2	2	1	обратный	50	115,0	мин. вата	подземная	2016	5328	1,5
3	2	3	подающий	63	52,0	мин. вата	подземная	2016	5328	1,5
4	3	2	обратный	63	52,0	мин. вата	подземная	2016	5328	1,5

Описание параметров тепловых сетей с. Соловьиха

Officative flapametpob fetivious	
Показатели	Описание, значение
Тепловая сеть от котельн	ой № 3 с. Соловьиха
а) описание структуры тепловых сетей от каждого источника тепловой энергии, от магистральных выводов до вводов жилой квартал и к социально значимым объектам	Для системы теплоснабжения от котельной № 3 с. Соловьиха принято качественное регулирование отпуска тепловой энергии в сетевой воде потребителям за счет изменения температуры сетевой воды в зависимости от температуры наружного воздуха. Расчетный температурный график: 95/70 °C
б) параметры тепловых сетей, тип изоляции, тип компенсирующих устройств, тип прокладки, характеристика грунтов в местах прокладки	Тепловая сеть водяная 2-х трубная. Материал трубопроводов — сталь. Теплоизоляция тепловых сетей выполнена из минеральной ваты с гидроизоляцией оцинкованной сталью. Способ прокладки — подземная. Компенсация температурных удлинений трубопроводов тепловой сети осуществляется за счет естественных изменений направления теплотрассы. Грунты в местах прокладки в основном суглинистые.
в) описание типов и количества секционирующей и регулирующей арматуры на тепловых сетях	Запорно-регулирующая арматура на тепловых сетях — вентили, задвижки, краны, поворотные заслонки
г) описание типов и строительных особенно- стей тепловых камер.	Тепловые камеры на сетях отсутствуют
д) фактические температурные режимы отпус- ка тепла в тепловые сети	Отпуск тепла осуществляется в соответствии с температурным графиком 95/70 °C и температурой наружного воздуха
e) статистика отказов тепловых сетей более суток (аварий, инцидентов) за последние 5 лет	Отказов тепловых сетей не зарегистрировано
ж) описание процедур диагностики состояния тепловых сетей и планирования капитальных и текущих ремонтов	Гидравлическое испытания тепловой сети проводятся один раз в год по завершении отопительного периода
и) описание периодичности и соответствия техническим регламентам и иным обязательным требованиям процедур летних ремонтов с параметрами и методами испытаний (гидравлических, температурных)	Гидравлические испытания тепловой сети проводятся один раз в год по завершении отопительного периода. Ремонты осуществляются в летний период на участках тепловой сети, поврежденной в результате гидравлических испытаний. Плановый капитальный ремонт (перекладка) тепловой сети не проводится
к) описание нормативов технологических потерь при передаче тепловой энергии (мощности), теплоносителя, включаемых в расчет отпущенных тепловой энергии (мощности) и теплоносителя	Норматив потерь тепловой энергии при транспортировке составляет 27,849 Гкал/год. Норматив потерь теплоносителя составляет 7,733 куб.м/год

л) предписания надзорных органов по запрещению дальнейшей эксплуатации участков тепловой сети и результаты их использования	Предписания надзорных органов о запрещении дальнейшей эксплуатации участков тепловых сетей или тепловой сети в целом отсутствуют
м) описание типов присоединений теплопотребляющих установок потребителей к тепловым сетям с выделением наиболее распространенных, определяющих выбор и обоснование графика регулирования отпуска тепловой энергии потребителям	Тип присоединения потребителей к тепловым сетям — непосредственное присоединение к магистральной тепловой сети отопительной нагрузки. Нагрузка на горячее водоснабжение отсутствует
н) Наличие коммерческого приборного учета тепловой энергии отпущенной из тепловой сети потребителям	Определение отпущенного количества тепла определяется по показаниям приборов учета тепловой энергии. В случае отсутствия приборов учета тепловой энергии: - для бюджетных потребителей в соответствии с договором на основании расчета тепловых нагрузок на отопление; - для населения — по нормативам, утвержденным исполнительным органом МО; - у прочих потребителей — в соответствии с договором на основании расчета тепловых нагрузок на отопление.
о) Анализ работы диспетчерских служб тепло- снабжающих предприятий используемых сред- ства автоматики, телемеханизации и связи	Диспетчерская служба – отсутствует
п) перечень выявленных бесхозяйных тепловых сетей и обоснование выбора организации, уполномоченной на их эксплуатацию	Бесхозяйные тепловые сети не выявлены

Часть 4. Зоны действия источников тепловой энергии

На территории МО Соловьихинский сельсовет действует один источник централизованного теплоснабжения, отапливающий объекты социальной сферы. Описание зон действия источников теплоснабжения с указанием адресной привязки и перечнем подключенных объектов представлено в таблице 6.

Таблица 6 Зона действия источников теплоснабжения МО Соловьихинский сельсовет

Теплоснабжающая организация	Вид источника тепло- снабжения	Зоны действия источников теплоснабжения
МП «MOKX»	Отопительная котельная № 3 с. Соловьиха	1. Бюджетные организации: - Филиал МБОУ "Алексеевская СОШ" – "Соловьихинская СОШ", ул. Ленина, 18; - Администрация Соловьихинского сельсовета, ул. Ленина, 102/2.

Для анализа эффективности централизованного теплоснабжения в МО Соловьихинский сельсовет используем термин «плотность тепловой нагрузки».

Для этого применим два симплекса: удельную материальную характеристику μ и удельную длину тепловой сети λ в зоне действия теплоисточника.

Удельная материальная характеристика тепловой сети представляет собой отношение материальной характеристики тепловой сети, образующей зону действия источника теплоты, к присоединенной к этой тепловой сети тепловой нагрузке.

$$\mu = \frac{M}{Q_{\text{CVMM}}^p}$$
 (м²/Гкал/ч);

где:

«М» - материальная характеристика тепловой сети (сумма произведений значений наружных диаметров трубопроводов отдельных участков (м) на длину этих участков (м)), m^2 :

« $Q_{\text{сумм}}^p$ » - суммарная тепловая нагрузка в зоне действия источника теплоты (тепловой мощности), присоединенная к тепловым сетям этого источника.

Удельная длина это отношение протяженности трассы тепловой сети к присоединенной к этой тепловой сети тепловой нагрузке:

$$\lambda = \frac{L}{Q_{cymm}^p}$$
 (м/Гкал/ч);

где:

«L» - суммарная длина трубопроводов тепловой сети, образующей зону действия источника теплоты, (м).

Эти два параметра отражают основное правило построения системы централизованного теплоснабжения - удельная материальная характеристика всегда меньше там, где высока плотность тепловой нагрузки. При этом сама материальная характеристика μ - это аналог затрат, а присоединенная тепловая нагрузка $Q^p_{\text{\tiny CVMM}}$ - аналог эффектов.

Таким образом, чем меньше удельная материальная характеристика µ, тем результативней процесс централизованного теплоснабжения.

Результаты расчетов оформим в таблицу 7:

Таблица 7 Расчет удельных характеристик по котельным МО Соловьихинский сельсовет

Наименование ис- точника теплоты	Материаль- ная харак- тери-стика тепловой се- ти М (м²)	Суммарная тепловая нагрузка $Q^p_{\scriptscriptstyle \text{сумм}}$ (Гкал/ч)	Суммарная длина тру- бопро- водов теп- ловой сети L (м)	Удельная ма- териальная характери- стика µ (м²/Гкал/ч)	Удельная длина тепловой сети λ
Котельная № 3 с. Соловьиха	9,026	0,15	167,0	60,2	1113,3

Определение порога централизации сведено к следующему расчету.

В малых автономных системах теплоснабжения требуется большая установленная мощность котельного оборудования для покрытия пиковых нагрузок. В больших централизованных системах пиковые нагрузки по отношению к средней используемой мощности существенно ниже. Разница примерно равна средней используемой мощности. Если потери в распределительных сетях децентрализованной системы теплоснабжения составляют около 5%, то равнозначность вариантов появляется при условии, что в тепловых сетях централизованной системы теряется не более 10% произведенного на централизованном источнике тепла. Этой границей и определяется зона высокой эффективности центрального теплоснабжения:

зона высокой эффективности централизованного теплоснабжения определяется по-казателем удельной материальной характеристики плотности тепловой нагрузки ниже $100 \, \mathrm{m}^2/\Gamma$ кал/ч;

зона предельной эффективности централизованного теплоснабжения определяется показателем удельной материальной характеристики плотности тепловой нагрузки ниже $200 \text{ м}^2/\Gamma$ кал/ч.

В МО Соловьихинский сельсовет плотность тепловой нагрузки по котельной № 3 с. Соловьиха находится в зоне эффективного теплоснабжения и составляет 60,2 м²/Гкал/ч, что говорит о высокой эффективности централизованного теплоснабжения.

Отношение равнозначных вариантов потерь в централизованной и децентрализованной системе теплоснабжения также зависит от соотношения стоимости строительства источников и тепловых сетей (чем выше это отношение, тем большим может быть уровень централизации) и от стоимости топлива (чем дороже топливо, тем меньшим должен быть уровень потерь в тепловых сетях).

Низкое качество эксплуатации тепловых сетей приводит к увеличению уровня потерь, по сравнению с нормативными, еще на $5\div35\%$.

Относительно не высокие потери в тепловых сетях объясняются высокой плотностью тепловой нагрузки котельной № 3 (60,2 $\text{м}^2/\Gamma$ кал/ч). Значение плотности тепловой нагрузки находятся в границах эффективной зоны централизованного теплоснабжения (рис. 3).

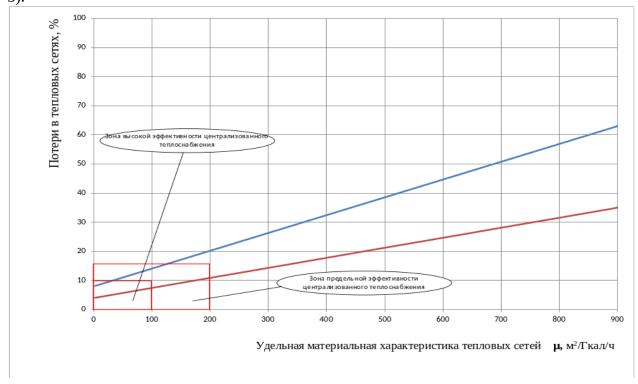


Рис. 3. Зависимость потерь тепловой энергии в тепловых сетях от удельной материальной характеристики тепловых сетей

Организация теплоснабжения в зонах перспективного строительства и реконструкции осуществляется на основе принципов определяемых статьей 3 Федерального закона от 27 июля 2010 года № 190-Ф3 «О теплоснабжении»:

обеспечение надежности теплоснабжения в соответствии с требованиями технических регламентов;

обеспечение энергетической эффективности теплоснабжения и потребления тепловой энергии с учетом требований, установленных федеральными законами;

обеспечение приоритетного использования комбинированной выработки электрической и тепловой энергии для организации теплоснабжения;

развитие систем централизованного теплоснабжения;

соблюдение баланса экономических интересов теплоснабжающих организаций и интересов потребителей;

обеспечение экономически обоснованной доходности текущей деятельности теплоснабжающих организаций и используемого при осуществлении регулируемых видов деятельности в сфере теплоснабжения инвестированного капитала;

обеспечение недискриминационных и стабильных условий осуществления предпринимательской деятельности в сфере теплоснабжения;

обеспечение экологической безопасности теплоснабжения.

Федеральным законом от 23 ноября 2011 года № 417 «О внесении изменений в отдельные законодательные акты Российской Федерации в связи с принятием федерального закона «О водоснабжении и водоотведении» в соответствии со статьей 20 пункта 10 вводятся следующие дополнения к статье 29 Федерального закона от 27 июля 2010 года № 190-Ф3 «О теплоснабжении»:

часть 8: с 1 января 2013 года подключение объектов капитального строительства к централизованным открытым системам теплоснабжения (горячего водоснабжения) для нужд горячего водоснабжения, осуществляемого путем отбора теплоносителя на нужды горячего водоснабжения, не допускается;

часть 9: с 1 января 2022 года использование централизованных открытых систем теплоснабжения (горячего водоснабжения) для нужд горячего водоснабжения, осуществляемого путем отбора теплоносителя на нужды горячего водоснабжения, не допускается.

Теплопотребляющие установки и тепловые сети потребителей тепловой энергии, в том числе застройщиков, находящиеся в границах определенного схемой теплоснабжения радиуса эффективного теплоснабжения источника, подключаются к этому источнику.

Подключение теплопотребляющих установок и тепловых сетей потребителей тепловой энергии, в том числе застройщиков, находящихся в границах определенного схемой теплоснабжения радиуса эффективного теплоснабжения источника, к системе теплоснабжения осуществляется в порядке, установленном законодательством о градостроительной деятельности для подключения объектов капитального строительства к сетям инженернотехнического обеспечения с учетом особенностей, предусмотренных Федеральным законом РФ от 27 июля 2010 №190-ФЗ «О теплоснабжении» и правилами подключения к системам теплоснабжения, утвержденными Правительством Российской Федерации.

Подключение осуществляется на основании договора на подключение к системе теплоснабжения, который является публичным для теплоснабжающей организации, теплосетевой организации.

При наличии технической возможности подключения к системе теплоснабжения и при наличии свободной мощности в соответствующей точке подключения отказ потребителю, в том числе застройщику, в заключении договора на подключение объекта капитального строительства, находящегося в границах определенного схемой теплоснабжения радиуса эффективного теплоснабжения, не допускается.

Подключение потребителей к системам централизованного теплоснабжения допускается только по закрытым схемам.

При выполнении расчетов по определению перспективных балансов тепловой мощности источников тепловой энергии, теплоносителя и присоединенной тепловой нагрузки, за основу принимались расчетные перспективные тепловые нагрузки в каждом конкретном районе, состоящем из отдельных систем теплоснабжения, образуемых теплоисточниками. При составлении баланса тепловой мощности и тепловой нагрузки в каждой системе теплоснабжения определяется избыток или дефицит тепловой мощности в каждой из указанных систем теплоснабжения, и сельского поселения в целом.

Далее определяются решения по каждому источнику теплоснабжения в зависимости от того дефицитен или избыточен тепловой баланс в каждой из систем теплоснабжения. По каждому источнику теплоснабжения принимается индивидуальное решение по перспективе его использования в системе теплоснабжения.

Перечень мероприятий, применяемый к источникам теплоснабжения следующий:

- 1. Закрытие, в связи с моральным и физическим устареванием источника теплоснабжения и передачей присоединенной тепловой нагрузки другим источникам;
- 2. Реконструкция источника теплоснабжения с увеличением установленной тепловой мощности;
- 3. Техническое перевооружение источника теплоснабжения, с установкой современного основного оборудования на существующую тепловую нагрузку;

- 4. Объединение тепловой нагрузки нескольких источников теплоснабжения с установкой нового источника теплоснабжения;
- 5. Строительство новых источников теплоснабжения, для обеспечения перспективных тепловых нагрузок.

Одним из методов определения сбалансированности тепловой мощности источников тепловой энергии, теплоносителя и присоединенной тепловой нагрузки в каждой из систем теплоснабжения является определение эффективного радиуса теплоснабжения.

В соответствии со статьей 2 Федерального закона от 27 июля 2010 года № 190-ФЗ «О теплоснабжении» радиус эффективного теплоснабжения — максимальное расстояние от теплопотребляющей установки до ближайшего источника тепловой энергии в системе теплоснабжения, при превышении которого, подключение (технологическое присоединение) теплопотребляющей установки к данной системе теплоснабжения нецелесообразно по причине увеличения совокупных расходов в системе теплоснабжения.

Решение задачи о том, нужно или не нужно трансформировать зону действия источника тепловой энергии, является базовой задачей построения эффективных схем теплоснабжения. Критерием выбора решения о трансформации зоны является не просто увеличение совокупных затрат, а анализ возникающих в связи с этим действием эффектов и необходимых для осуществления этого действия затрат.

Часть 5. Тепловые нагрузки потребителей тепловой энергии, групп потребителей телей тепловой энергии в зонах действия источников тепловой энергии

Потребление тепловой энергии при расчетных температурах наружного воздуха может быть основано на анализе тепловых нагрузок потребителей, согласованных в договорах теплоснабжения, а так же на анализе показаний приборов учета тепловой энергии, установленных у потребителей. Для производственных котельных таковой анализ представляется несущественным, и может быть рассчитан, исходя из существующих мощностей котельных.

Тепловые нагрузки по источникам тепловой энергии сведены в таблицу 8.

Таблица 8

Структура полезного отпуска тепловой энергии по котельным MO Соловьихинский сельсовет

	110 KOTE/IBIIBINI WO GOMOBBIAMINEKHII EE/IBEOBET							
		Подключенная нагрузка с учетом потерь в тепловых сетях, Гкал/ч						
№ п/п	Котельная		в том числе					
11/11		Всего	отопление	вентиляция	ГВС	техноло- гия		
1	Котельная № 3 с. Соловьиха	0,15	0,15	-	_	-		
	Итого	0,15	0,15	-	-	-		

Часть 6. Балансы тепловой мощности и тепловой нагрузки в зонах действия источников тепловой энергии

Балансы установленной, располагаемой тепловой мощности, тепловой мощности нетто и тепловой нагрузки, включающие все расчетные элементы территориального деления поселения, представлены в таблицах 9, 10.

Баланс тепловой мощности котельных МО Соловьихинский сельсовет

N _Ω π/π	Котельная	Установ- ленная мощ- ность, Гкал/ч	Распола-гае- мая мощ- ность, Гкал/ч	Собствен- ные ну- жды, Гкал/ч	Тепловая мощность нетто, Гкал/ч	Подклю- ченная на- грузка, Гкал/ч	Резерв (дефицит) мощности, Гкал/ч	Загрузка котельной, % от располагаемой мощности	Потери тепла, Гкал/ч	Потери тепла, % от отпуска т/э в сеть
1	Котельная № 3 с. Соловьиха	1,23	1,02	0,05	0,97	0,15	0,82	14,7	0,05	3,4
	итого:	1,23	1,02	0,05	0,97	0,15	0,82	X	0,05	X

Таблица 10

Структура полезного отпуска тепловой энергии от котельной МО Соловьихинский сельсовет

N ₀ π/π		Производство тепловой энергии, Гкал/год	Собственные нужды котельной, Гкал/год	Потери тепловой энергии, Гкал/год	5	епловой энергии, Гкал/ год
					Всего	В т.ч. на нужды пред- приятия, Гкал/год
1	Котельная № 3 с. Со- ловьиха	997,85	170,00	27,85	800,00	0,00
	ИТОГО:	997,85	170,00	27,85	800,00	0,00

Дефицита тепловой мощности по источникам тепловой энергии МО Соловьихинский сельсовет не выявлено.

Часть 7. Балансы теплоносителя

Водоподготовительные установки теплоносителя для тепловых сетей на источнике тепловой энергии отсутствуют.

Баланс теплоносителя представлен в таблице 11.

Таблица 11 Баланс теплоносителя котельной MO Соловьихинский сельсовет

№ п/п	Котельная	Установленная мощность, Гкал/ч	Расход сетевой воды, м ³ /ч	Подпитка всего, м³/год	Потери теплоносителя с утечками, м ³ /год	Реализа- ция теп- лоноси- теля, м ³
1	Котельная № 3 с. Соловьиха	1,23	21,5	7,7	7,7	0,0

Часть 8. Топливные балансы источников тепловой энергии и система обеспечением топливом

При составлении топливного баланса теплота сгорания каменного угля марки Д принята $5100~{
m kka}$ лукг.

Топливный баланс источника тепловой энергии с указанием вида и количества основного топлива на 2022 год приведен в таблице 12.

Топливный баланс источника тепловой энергии MO Соловьихинский сельсовет на 2022 год

Таблица 12 вой энергии

№ п/п	Котельная	Котлоагрегаты (основные)	Вид основ- ного топ- лива	Произ- водство тепловой энергии, Гкал/год	Удельный расход топлива на выработку 1 Гкал, кг.у.т./Гкал	Расход топлива на вы- работку тепла, т.н.т./ год
1	Котельная № 3 с. Соловьиха	№ 1: КВр-0,63 № 2: Алтай 5	Каменный уголь мар- ки Д	997,85	230,0	314,8

Часть 9. Оценка надежности теплоснабжения

Надежность теплоснабжения обеспечивается надежной работой всех элементов системы теплоснабжения, а также внешних, по отношению к системе теплоснабжения, систем электро-, водо-, топливоснабжения источников тепловой энергии.

Для оценки надежности систем теплоснабжения необходимо использовать показатели надежности структурных элементов системы теплоснабжения и внешних систем электро-, водо-, топливоснабжения источников тепловой энергии.

1) Показатель надежности электроснабжения источников тепла (K_3)

Характеризуется наличием или отсутствием резервного электропитания:

при наличии резервного электроснабжения $K_3 = 1.0$;

при отсутствии резервного электроснабжения при мощности источника тепловой энергии (*Гкал/ч*):

до $5.0 - K_9 = 0.8$;

 $5.0 - 20 - K_{3} = 0.7$;

свыше $20 - K_3 = 0.6$.

В таблице 13 представлены мощности каждого источника тепловой энергии и соответствующие им показатели резервного электронсабжения.

Таблица 13 Мошности источников тепловой энергии и соответствующие им коэффициенты

тощности него инжов тениово	n shepi nin n coorbererby lomie i	и коэффицисии
Наименование котельной	Установленная мощность, Гкал/час	$K_{\mathfrak{s}}$

2) Показатель надежности водоснабжения источников тепла ($K_{\rm e}$)

Характеризуется наличием или отсутствием резервного водоснабжения:

- при наличии резервного водоснабжения $K_{\scriptscriptstyle g}$ = 1,0;
- при отсутствии резервного водоснабжения при мощности источника тепловой энергии (Γ кал/ч):
 - до $5.0 K_{e} = 0.8$;
 - $-5,0-20-K_{e}=0,7;$
 - свыше $20 K_{\scriptscriptstyle g} = 0,6$.

Таблица 14

Мощности источников тепловой энергии и соответствующие им коэффициенты

Наименование котельной	Установленная мощность, Гкал/час	$K_{\mathfrak{s}}$
Котельная № 3 с. Соловьиха	1,23	0,8

3) Показатель надежности топливоснабжения источников тепла $K_{\scriptscriptstyle m}$

Характеризуется наличием или отсутствием резервного топливоснабжения:

- при наличии резервного топлива $K_m = 1,0$;
- при отсутствии резервного топлива при мощности источника тепловой энергии (Гкал/ч):
 - до 5,0 $K_m = 1,0;$
 - $-5,0-20-K_m=0,7;$
 - свыше $20 K_m = 0.5$.

Резервный источник топливоснабжения котельной № 3 имеется - $K_m = 1,0$.

4) Показатель соответствия тепловой мощности источников тепла и пропускной способности тепловых сетей фактическим тепловым нагрузкам потребителей (K_6)

Величина этого показателя определяется размером дефицита (%):

- до 10: K_6 = 1,0;
- -10-20: $K_{6}=0.8$;
- -20-30: K_6 0,6;
- свыше 30: $K_6 = 0.3$.

В таблице 15 представлены значения дефицита тепловой энергии по каждому источнику и соответствующие им показатели соответствия тепловой мощности источников фактическим тепловым нагрузкам потребителей.

Таблица 15

Значения дефицитов источника тепловой энергии и соответствующие им коэффициенты МО Соловьихинский сельсовет

Наименование котельной	Значение дефицита, %	K_{σ}	
Котельная № 3 с. Соловьиха	-	1,0	

5) Показатель уровня резервирования источников тепла и элементов тепловой сети (K_p)

Показатель, характеризуемый отношением резервируемой фактической тепловой нагрузки к фактической тепловой нагрузке (%) системы теплоснабжения, подлежащей резервированию:

$$-90-100-K_p=1,0;$$

$$-70-90-K_p=0,7;$$

$$-50-70-K_{p}=0.5$$
;

$$-30-50-K_p=0,3;$$

- менее $30-K_p=0,2.$

Резервирование тепловой нагрузки котельной № 3 не предусмотрено $K_p = 1,0$.

6) Показатель технического состояния тепловых сетей (K_c)

Показатель, характеризуемый долей ветхих, подлежащих замене (%) трубопроводов:

$$-$$
 до $10 - K_c = 1,0;$
 $-10 - 20 - K_c = 0,8;$
 $-20 - 30 - K_c = 0,6;$
 $-$ свыше $30 - K_c = 0,5.$

В таблице 16 представлены значения доли сетей по котельной, нуждающихся в замене, и соответствующие им показатели технического состояния тепловых сетей.

Таблица 16

Значения доли сетей по каждой котельной, нуждающихся в замене, и соответствующие им коэффициенты

Наименование котельной	Доля сетей к замене, %	K_c
Котельная № 3 с. Соловьиха	0,0	1,0

7) Показатель интенсивности отказов тепловых сетей (K_{omk})

Характеризуемый количеством вынужденных отключений участков тепловой сети с ограничением отпуска тепловой энергии потребителям, вызванным отказом и его устранением за последние три года.

$$M_{om\kappa} = n_{om\kappa}/(3*S)[1/(\kappa_M*20\partial)],$$

где n_{omk} – количество отказов за последние три года;

S – протяженность тепловой сети данной системы теплоснабжения (км).

Отказов тепловой сети в отопительный период за последние три года в системе централизованного теплоснабжения МО Соловьихинский сельсовет не зарегистрировано.

Протяженность тепловой сети системы централизованного теплоснабжения МО Соловьихинский сельсовет составляет 0,167 км.

$$M_{omk} = 0/(0.167*3)=0.0$$

В зависимости от интенсивности отказов ($N_{om\kappa}$) определяется показатель надежности ($N_{om\kappa}$):

$$-$$
 до $0.5-K_{\mathit{omk}}=1.0;$ $-0.5-0.8-K_{\mathit{omk}}=0.8;$ $-0.8-1.2-K_{\mathit{omk}}=0.6;$ $-$ свыше $1.2-K_{\mathit{omk}}=0.5.$

Таблица 17

Значения показателя интенсивности отказов тепловой сети и соответствующие им коэффициенты

Наименование котельной	Показатель интенсивности отказов	$K_{om\kappa}$
Котельная № 3 с. Соловьиха	0,0	1,0

8) Показатель относительного недоотпуска тепла ($K_{{\scriptscriptstyle Hed}}$)

В результате аварий и инцидентов определяется по формуле:

$$Q_{\text{\tiny Hed}} = Q_{\text{\tiny aB}}/Q_{\phi \text{\tiny akm}} * 100 (\%),$$

где Q_{as} – аварийный недоотпуск тепла за последние 3 года;

 $Q_{\it факт}$ — фактический отпуск тепла системой теплоснабжения за последние три года.

Величина недоотпуска тепловой энергии в результате инцидентов на тепловых сетях системы централизованного теплоснабжения МО Соловьихинский сельсовет составляет 0,0 Гкал. Фактический отпуск тепла через систему централизованного теплоснабжения МО Соловьихинский сельсовет составляет 800 Гкал.

$$Q_{\text{Hed}} = 0.0/800 * 100(\%),$$

В зависимости от величины недоотпуска тепла ($Q_{\text{нед}}$) определяется показатель надежности ($K_{\text{нед}}$):

$$-$$
 до 0,1 $K_{\text{нед}}$ = 1,0;

$$-0.1-0.3-K_{\mu\rho\rho}=0.8$$
;

$$-0.3 - 0.5 - K_{Hed} = 0.6;$$

- свыше $0.5 - K_{\text{нед}} = 0.5$.

Таблица 18

Значения показателя относительного недоотпуска тепла

и соответствующие им коэффициенты

Наименование котельной	Показатель относительного недоотпуска тепла	$K_{{\scriptscriptstyle He}\partial}$	
Котельная № 3 с. Соловьиха	0,0	1,0	

9) Показатель качества теплоснабжения ($K_{_{\mathcal{H}}}$)

Характеризуется количеством жалоб потребителей тепла на нарушение качества теплоснабжения:

$$\mathcal{K} = \mathcal{A}_{\mathcal{K}aa} / \mathcal{A}_{\mathcal{C}VMM} (\%),$$

где $\mathcal{A}_{\mbox{\tiny {\it CУММ}}}$ — количество зданий, снабжающихся теплом от системы теплоснабжения;

 $\mathcal{A}_{\mathcal{H}_{an}}$ — количество зданий, по которым поступили жалобы на работу системы теплоснабжения.

В зависимости от рассчитанного коэффициента (\mathcal{K}) определяется показатель надежности ($K_{\mathcal{K}}$):

$$-$$
 до 0,2 K_{∞} = 1,0;

 $K_{\mathscr{H}}$:

$$-0.2 - 0.5 - K_{HC} = 0.8$$
;

$$-0.5-0.8-K_{\text{HC}}=0.6$$
;

$$-$$
 свыше $0.8 - K_{\infty} = 0.4.$

За 2021 год жалобы на работу системы централизованного теплоснабжения МО Соловьихинский сельсовет не поступали. Количество зданий, по которым поступили жалобы на работу системы теплоснабжения, составляет 0. Общее количество отапливаемых зданий в МО Соловьихинский сельсовет составляет 2.

$$\mathcal{K} = \frac{0}{2} = 0.0$$

Таблица 19

Значения показателя качества теплоснабжения

и соответствующие им коэффициенты

11 000120101	2)10411011111111111111111111111111111111		
Наименование котельной	Показатель качества тепло- снабжения	$K_{{\scriptscriptstyle He}\partial}$	
Котельная № 3 с. Соловьиха	0,0	1,0	

10) Показатель надежности системы теплоснабжения ($K_{{\scriptscriptstyle Had}}$) Определяется как средний по частным показателям $K_{{\scriptscriptstyle 9}}$, $K_{{\scriptscriptstyle 6}}$, $K_{{\scriptscriptstyle$

$$K_{\text{\tiny HA}\partial} = \frac{K_{\text{\tiny 9}} + K_{\text{\tiny 8}} + K_{\text{\tiny m}} + K_{\text{\tiny 6}} + K_{\text{\tiny p}} + K_{\text{\tiny c}} + K_{\text{\tiny omk}} + K_{\text{\tiny He}\partial} + K_{\text{\tiny ME}}}{n},$$

$$K_{{\scriptscriptstyle Ha\partial}} \!=\! \frac{0,\!8+0,\!8+1,\!0+1,\!0+1,\!0+1,\!0+1,\!0+1,\!0+1,\!0}{9} \!=\! 0,\!96 \; ,$$

где n– число показателей, учтенных в числителе.

11) Оценка надежности систем теплоснабжения

Таблица 20

Показатель надежности и его частные показатели по котельным с.Соловьиха

Название котельной	$K_{\mathfrak{g}}$	$K_{\scriptscriptstyle g}$	K_{m}	$K_{\scriptscriptstyle ec{0}}$	K_{p}	K_c	$K_{om\kappa}$	$K_{{\scriptscriptstyle He}\partial}$	$K_{_{\mathcal{H}}}$	$K_{{\scriptscriptstyle Ha}{\partial}}$
Котельная № 3 с. Со- ловьиха	0,8	0,8	1,0	1,0	1,0	1,0	1,0	1,0	1,0	0,96

Проанализировав таблицу 20 с полученными показателями надежности, систему теплоснабжения можно оценить как высоконадежную (показатель находится выше 0,9).

Часть 10. Технико-экономические показатели теплоснабжающей организации Описание результатов хозяйственной деятельности теплоснабжающих и теплосетевых организаций в соответствии с требованиями, устанавливаемыми Правительством Российской Федерации в стандартах раскрытия информации теплоснабжающими организациями, теплосетевыми организациями, представлено в таблице 21.

Таблица 21

Общие данные о теплоснабжающей организации МП «МОКХ»

Наименование организации	Муниципальное предприятие «Многоотрасле-		
таимснование организации	вое объединение коммунального хозяйства»		
Месторасположение организации	с. Петропавловское, ул. Советская, 26		
Наименование муниципального об-	Петропавловский муниципальный район		
разования	СГОССО А У У П У У		
Юридический адрес	659660 Алтайский край, Петропавловский рай-		
F - + + +	он, с. Петропавловское, ул. Советская, 26		
Почтовый адрес	659660 Алтайский край, Петропавловский рай-		
почтовый адрес	он, с. Петропавловское, ул. Советская, 26		
Ф.И.О. руководителя	Филимонов Василий Иванович		
Ф.И.О. главного бухгалтера			
Ф.И.О. и должность лица, ответ-	Получина Сроплана Минай пория		
ственного за заполнение формы	Долженко Светлана Михайловна		
Контактные телефоны ((код) номер телефо-	(385-73) 22-1-98		
на)	(305-73) 22-1-90		
ИНН	2264000159		
КПП	226401001		
ОГРН	1022200534960		
Период представления информации	2021 год		
	Таблица ЭЭ		

Таблица 22 Общие данные о хозяйственной деятельности теплоснабжающей организации

	оощие данные о хозинетвения	лі делі слі	JIIOCIN ICIDIOCIIC	тожитощей орга	пизации			
№ п/п	Наименование показателя	Ед.изм.	Значение по- казателя	Значение по- казателя	Примечание			
11/11	показатели		Rusuicin	Rusuican				
1	Информация о ценах (тарифа этим ценам (тарифам):	ах) на регу	лируемые това	ры и услуги и н	надбавках к			
1.1	Утвержденные тарифы на тепловую энергию для потребителей		1 полугодие 2021 года	2 полугодие 2021 года	Решение управления Алтайского			
	одноставочный	Руб/ Гкал	2244,94	2338,57	края по госу- дарствен-ному регулированию цен и тарифов от 25.11.2020 № 353			
2	Информация об основных показателях финансово-хозяйственной деятельности ре-							

	гулируемых организаций, ут ственному регулированию це водственных затрат (в целом	ен и тарифов,	включая структуру основн	оая по государ- ых произ-
2.1	Вид регулируемой деятельности (производство передача и сбыт тепловой энергии)	Ед.изм.	Производство и реализа- ция тепловой энергии	Примечание
2.2	Выручка от регулируемой деятельности	тыс.руб.	18654,90	
2.3	Себестоимость производимых товаров (оказываемых услуг) по регулируемому виду деятельности	тыс.руб.	18654,90	
	Операционные расходы	тыс.руб.	5884,97	
	Неподконтрольные расходы	тыс.руб.	2002,13	
	Расходы на приобретение энергоресурсов, холодной воды и теплоносителя	тыс.руб.	9955,54	
	Прибыль	тыс.руб.	0,00	
	Корректировка с целью учета отклонения фактических значений параметров расчета тарифов от значений, учтенных при установлении тарифов	тыс.руб.	812,26	
2.4	Объем отпущенной тепло- вой энергии в сеть	тыс.Гкал	10,939	
2.5	Объем тепловой энергии, отпускаемой потребителям, в том числе	тыс.Гкал	8,140	
	По нормативам потребления	тыс.Гкал	3,871	
2.7	Технологические потери тепловой энергии при передаче по тепловым сетям	%	22,45	
2.8	Протяженность тепловых сетей в двухтрубном исчислении	KM	6,619	
2.9	Количество котельных	ШТ	3	
2.10	Среднечписочная численность основного производственного персонала	человек	21,5	
2.11	Удельный расход условного топлива на единицу тепловой энергии, отпускаемую в тепловую сеть	кг у.т./Гкал	213,3	
2.12	Удельный расход электрической энергии на единицу тепловой энергии, отпускаемой в тепловую сеть	Квтч/Гкал	5,12	
2.13	Удельный расход холодной	куб.м/Гкал	0,115	

	воды на единицу тепловой энергии, отпускаемой в тепловую сеть			
3		изаций и и	ьских характеристиках регулир их соответствии государственн	
3.1	Количество аварий на си- стемах теплоснабжения	Единиц на км	0	
3.2	Количество часов (суммарно за календарный год), превышающих допустимую продолжительность перерыва подачи тепловой энергии, и количество потребителей, затронутых ограничениями подачи тепловой энергии, в том числе:			
	Количество часов (суммарно за календарный год)	час	0	
	Количество потребителей, затронутых ограничениями подачи тепловой энергии	человек	0	
3.3	Количество часов (суммарно за календарный год) отключения от нормативной температуры воздуха по вине регулируемой организации в жилых и не жилых отапливаемых помещениях	час	0	
4	Информация об инвестицион – инвестиционные программ			
5		улируемы	ехнической возможности дост их организаций, а также о реги истеме теплоснабжения.	
5.1	Количество поданных и за- регистрированных заявок на подключение к системе теплоснабжения	ШТ	0	
5.2	Количество исполненных заявок на подключение к системе теплоснабжения	ШТ	0	
5.3	Количество заявок на под- ключение к системе тепло- снабжения, по которым принято решение об отказе в подключении	ШТ	0	
5.4	Информация о резерве мощности системы тепло- снабжения	Гкал/ч	4,11	

Часть 11. Цены и тарифы в сфере теплоснабжения

Динамика утвержденных тарифов с учетом последних трех лет приведена в таблице 23.

Динамика тарифов на тепловую энергию теплоснабжающих организаций, действу-

ющих на территории МО Соловьихинский сельсовет

Период	2019 год	2020 год	2021 год	1 полугодие 2022 года	2 полугодие 2022 года
Тариф, руб./Гкал	2192,30	2244,94	2291,76	2338,57	2996,08
% роста	X	102,4%	102.1%	102.0%	128.1%

Часть 12. Описание существующих и технологических проблем в системах теплоснабжения поселения

Целью настоящего раздела является описание:

- существующих проблем организации качественного теплоснабжения (перечень причин, приводящих к снижению качества теплоснабжения, включая проблемы в работе теплопотребляющих установок потребителей);
- существующих проблем организации надежного и безопасного теплоснабжения поселения (перечень причин, приводящих к снижению надежного теплоснабжения, включая проблемы в работе теплопотребляющих установок потребителей);
 - проблем развития систем теплоснабжения;
- существующих проблем надежного и эффективного снабжения топливом действующих систем теплоснабжения;
- анализ предписаний надзорных органов об устранении нарушений, влияющих на безопасность и надежность системы теплоснабжения.

Перечень причин, приводящих к снижению качества теплоснабжения:

- 1. Износ основных фондов (тепловых сетей) и их технологическая отсталость.
- 2. Неплатежи предприятиям жилищно-коммунального комплекса.
- 3. Работа котельных за пределами оптимальных показателей.
- 4. В ТСО не разработаны энергетические характеристики тепловых сетей по следующим показателям: тепловые потери, потери теплоносителя, удельный расход электроэнергии на транспорт теплоносителя, максимальный и среднечасовой расход сетевой воды, разность температур в подающем и обратном трубопроводах в соответствии с ПТЭ п. 2.5.6.
 - 5. Не организован приборный учёт отпускаемой теплоты от источника (котельной).
 - 6. Отсутствует оборудование химводоподготовки.
 - 7. Не проводятся режимно-наладочные испытания тепловых сетей.
 - 8. Не разработаны гидравлические карты тепловых сетей.
 - 9. Не проведена наладка теплопотребляющих установок потребителей.

Проблемы в системах теплоснабжения разделены на две группы и сведены в таблицу 24.

Таблица 24 Проблемы в системах теплоснабжения

Наименование системы теплоснаб-Проблемы в системах теплоснабжения жения, теплоснабжающей организа-На котельных На тепловых сетях ЦИИ 1) Отсутствие приборов учета как на выводе из котельных, так и у потребителей; Централизованное 2) Отсутствие водоподготовки 1) Отсутствие энергетических хатеплоснабжение, подпиточной воды; рактеристик, режимно-наладочкотельная № 3 с. 3) Износ оборудования котельных испытаний, гидравлических Соловьиха режимов тепловых сетей 4) Мощность оборудования не соответствует подключенной нагрузке

Рекомендации:

- 1. В соответствии с п. 6.2.32 ПТЭ тепловых энергоустановок провести испытания тепловых сетей на максимальную температуру теплоносителя, на определение тепловых и гидравлических потерь и результаты внести в паспорт тепловой сети.
- 2. Провести техническое освидетельствование тепловых сетей и оборудования в соответствии с "Методическими рекомендациями по определению технического состояния систем теплоснабжения, горячего водоснабжения, холодного водоснабжения и водоотведения путём проведения освидетельствования". (Письмо Министерства регионального развития РФ от 26 апреля 2012 года № 9905-АП/14, ПТЭ тепловых энергоустановок п. 2.6.2).
- 3. Используя результаты испытаний, разработать соответствующие энергетические характеристики и выполнить гидравлический расчёт тепловых сетей, в том числе программу наладки теплопотребляющих установок потребителей.
 - 4. Выполнить наладку теплопотребляющих установок потребителей.
- 5. Провести диагностику трубопроводов тепловых сетей (неразрушающим методом) с целью определения коэффициента аварийноопасности, установления сроков и условий их эксплуатации и определения мер, необходимых для обеспечения расчетного ресурса тепловых сетей с последующим техническим освидетельствованием в соответствии с ПТЭ тепловых энергоустановок п. 2.6.2. Результаты использовать как обосновывающие материалы при разработке инвестиционных программ.
- 6. Провести модернизацию объектов коммунальной инфраструктуры посредством привлечения инвестиционных и заемных средств на длительный период.
- 7. Минимизировать неиспользуемые мощности котельной за счет замены котлов на менее мощные.
 - 8. Приобрести и смонтировать водоподготовительные установки.
 - Глава 2. Перспективное потребление тепловой энергии на цели теплоснабжения
 - Часть 1. Данные базового уровня потребления тепла на цели теплоснабжения

Данные базового уровня потребления тепла на цели теплоснабжения представлены в таблице 25

Таблица 25 Базовый уровень потребления тепла на цели теплоснабжения в МО Соловьихинский сельсовет

No	Система теплоснабжения	Подключенная	Базовый уровень потреб-
п/п		нагрузка,	ления тепла на цели тепло-
		Гкал/ч	снабжения, без учета по-
			терь при транспортировке
			теплоносителя,
			Гкал/год
1	Котельная № 3 с. Соловьиха	0,15	800,0

Часть 2. Прогнозы приростов площади строительных фондов

Приросты площадей строительных фондов планируются за счет индивидуального жилищного строительства. План расположения новых объектов индивидуального жилищного строительства за границей радиуса эффективного теплоснабжения и могут в расчет не приниматься.

Часть 3. Прогнозы приростов потребления тепловой энергии (мощности)

Прирост потребления тепловой мощности на территории МО Соловьихинский сельсовет возможен за счет присоединения к системе централизованного теплоснабжения общественных зданий, расположенных в зоне действия отопительной котельной.

Целесообразность присоединения общественных зданий к системе централизованного теплоснабжения должно оцениваться по совокупности технических и экономических параметров.

Глава 3. Предложения по строительству, реконструкции и техническому перевооружению источников тепловой энергии и тепловых сетей

В связи неудовлетворительным техническим состоянием источников тепловой энергии МО Соловьихинский сельсовет, их убыточностью, высокой степенью износа котельного оборудования основным направлением в развитии системы теплоснабжения МО Соловьихинский сельсовет на расчетный период до 2036 года является модернизация систем теплоснабжения.

В соответствии со ст.3 п.4 Федерального закона от 27.07.2010 № 190-ФЗ «О теплоснабжении», не эффективные котельные подлежат закрытию с передачей тепловой нагрузки на современные модульные котельные (децентрализация).

Учитывая перспективы роста количества потребителей, объема отпуска тепловой энергии и большие капитальные вложения на децентрализацию источников тепловой энергии, эти мероприятия неэффективны.

При условии продолжения эксплуатации существующих котельных, необходимо провести мероприятия по замене и модернизации существующего оборудования, направленное на повышение технической и экономической эффективности оборудования.

Данные мероприятия включают в себя расчет гидравлических режимов тепловой сети, корректировку диаметров магистральных трубопроводов с учетом фактически подключенных и перспективных тепловых нагрузок, перекладку изношенных, выработавших нормативный срок службы тепловых сетей с заменой стальной трубы на полимерную, выполнение балансирования тепловой сети путем калибровки подающих трубопроводов у потребителей.

Провести модернизацию изношенного и энергозатратного котельного оборудования на энергоэффективное, автоматическое, привести мощность теплогенерирующего оборудования в соответствие подключенной нагрузке, сбалансировать тягодутьевое оборудование для достижения оптимальных показателей, заменить устаревшее освещение на современные образцы.

III СХЕМА ТЕПЛОСНАБЖЕНИЯ

Глава 1. Показатели перспективного спроса на тепловую энергию (мощность) и теплоноситель в установленных границах территории поселения

Показатели перспективного спроса на тепловую энергию централизованных источников теплоснабжения приведены в таблице 26.

Таблица 26 Показатели перспективного спроса на тепловую энергию централизованных источников теплоснабжения

No		Установлен-						
п/п	и снабжения	ная мощ- ность, Гкал/ час	Базовый уровень 2021 год	2022 год	2023 год	2024 год	2025- 2030 год	2031- 2036 год
1	Котельная № 3 с. Соловьиха	1,23	800,0	800,0	800,0	800,0	800,0	800,0

На расчетный период увеличение спроса на тепловую энергию от централизованных систем теплоснабжения не планируется.

Глава 2. Перспективные балансы тепловой мощности источников тепловой мощности источников тепловой энергии и тепловой нагрузки потребителей

Перспективные балансы тепловой мощности источников и тепловой нагрузки потребителей приведены в таблице 27.

Таблица 27 Перспективные балансы тепловой мощности источников и тепловой нагрузки потребителей МО Соловьихинский сельсовет

No	Система тепло-	Установлен-	По	дключе	нная наг	рузка, Г	`кал/час		
п/п	снабжения	ная мощ- ность, Гкал/час	Базовый уровень 2021 год	2022 год	2023 год	2024 год	2025- 2030 год	2031- 2036 год	

1 Котельная № 3 с. Соловьиха	1,23	0,15	0,15	0,15	0,15	0,15	0,15
---------------------------------	------	------	------	------	------	------	------

В настоящее время источником тепловой энергии для жилых зданий и общественных объектов являются две локальные котельные, оснащенные котлами на твердом топливе. Охват централизованным теплоснабжением жилых зданий, согласно предоставленным данным, достаточно низкий, индивидуальный жилой фонд (усадебная застройка) снабжается теплом посредством автономных индивидуальных отопительных установок (печи, камины, котлы на твердом топливе).

Строительства новых объектов общественно-делового и социального назначения, согласно предоставленным данным, не предполагается.

Проектируемый индивидуальный жилой фонд планируется отапливать индивидуальными отопительными установками (печи, камины, котлы на твердом топливе).

На расчетный период увеличение спроса на мощность централизованных систем теплоснабжения не планируется.

Глава 3. Перспективные балансы теплоносителя

К нормируемым технологическим затратам теплоносителя (теплоноситель – вода) относятся:

- затраты теплоносителя на заполнение трубопроводов тепловых сетей перед пуском после плановых ремонтов и при подключении новых участков тепловых сетей;
- технологические сливы теплоносителя средствами автоматического регулирования теплового и гидравлического режима, а также защиты оборудования;
- технически обоснованные затраты теплоносителя на плановые эксплуатационные испытания тепловых сетей и другие регламентные работы.

К нормируемым технологическим потерям теплоносителя относятся технически неизбежные в процессе передачи и распределения тепловой энергии потери теплоносителя с его утечкой через неплотности в арматуре, сальниковых компенсаторах и трубопроводах тепловых сетей в пределах, установленных правилами технической эксплуатации электрических станций и сетей, а также правилами технической эксплуатации тепловых энергоустановок.

Объем нормативных затрат теплоносителя в системе централизованного теплоснабжения МО Соловьихинский сельсовет составляет 7,7 куб.м в год.

В связи с отсутствием в теплоснабжающей организации водоподготовительных установок и необходимостью их наличия в котельных планом мероприятий по техническому перевооружению предусмотрено приобретение и монтаж водоподготовительных установок.

Глава 4. Предложение по строительству, реконструкции и техническому перевооружению источников тепловой энергии

Предлагаемые мероприятия приведены в Главе 3 «Предложения по строительству, реконструкции и техническому перевооружению источников тепловой энергии и тепловых сетей» обосновывающих материалов к схеме теплоснабжения, описание основных проблем - в Части 12 Главы 1.

Основное направление развития теплоснабжения в МО Соловьихинский сельсовет, определяемое Схемой теплоснабжения на расчетный период до 2036 года, глубокая модернизация систем теплоснабжения, техническое перевооружение источника теплоснабжения с установкой современного автоматического основного оборудования на существующую тепловую нагрузку.

С целью повышения надежности и энергетической эффективности котельных необходимо выполнить их модернизацию для уменьшения избыточно установленной мощности и использования современного, высокоэкономичного и энергоэффективного оборудования.

Основные предлагаемые мероприятия:

- 1. Провести модернизацию изношенного и энергозатратного котельного оборудования на энергоэффективное, автоматическое.
- 2. Привести в соответствие мощность теплогенерирующего оборудования подключенной тепловой нагрузке.
- 3. Сбалансировать тягодутьевое оборудование для достижения оптимальных показателей.
 - 4. Приобрести и смонтировать водоподготовительные установки.
 - 5. Заменить устаревшее освещение на современные образцы.

Глава 5. Предложения по строительству и реконструкции тепловых сетей

Предлагаемые мероприятия приведены в Главе 3 «Предложения по строительству, реконструкции и техническому перевооружению источников тепловой энергии и тепловых сетей» обосновывающих материалов к схеме теплоснабжения, описание основных проблем - в Части 12 Главы 1.

С целью повышения энергоэффективности и снижения потерь при транспортировке тепловой энергии, следует реконструировать тепловые сети с заменой материала труб и теплоизоляции на полимерную. Мероприятие следует выполнить после выработки тепловыми сетями нормативного ресурса.

Следует произвести гидравлический расчет для участков тепловых сетей и привести диаметры магистральных трубопроводов к оптимальным величинам, выполнить наладку теплопотребляющих установок потребителей.

Основные предлагаемые мероприятия:

- 1. В соответствии с п. 6.2.32 ПТЭ тепловых энергоустановок провести испытания тепловых сетей на максимальную температуру теплоносителя, на определение тепловых и гидравлических потерь и результаты внести в паспорт тепловой сети.
- 2. Провести техническое освидетельствование тепловых сетей и оборудования в соответствии с "Методическими рекомендациями по определению технического состояния систем теплоснабжения, горячего водоснабжения, холодного водоснабжения и водоотведения путём проведения освидетельствования". (Письмо Министерства регионального развития РФ от 26 апреля 2012 года № 9905-АП/14, ПТЭ тепловых энергоустановок п. 2.6.2).
- 3. Используя результаты испытаний, разработать соответствующие энергетические характеристики и выполнить гидравлический расчёт тепловых сетей, в том числе программу наладки теплопотребляющих установок потребителей.
 - 4. Выполнить наладку теплопотребляющих установок потребителей.
- 5. Провести диагностику трубопроводов тепловых сетей (неразрушающим методом) с целью определения коэффициента аварийноопасности, установления сроков и условий их эксплуатации и определения мер, необходимых для обеспечения расчетного ресурса тепловых сетей с последующим техническим освидетельствованием в соответствии с ПТЭ тепловых энергоустановок п. 2.6.2. Результаты использовать как обосновывающие материалы при разработке инвестиционных программ.
- 6. Провести модернизацию объектов коммунальной инфраструктуры посредством привлечения инвестиционных и заемных средств на длительный период.

Глава 6. Перспективные топливные балансы

Перспективные топливные балансы для источника тепловой энергии расположенного в границах поселения, рассчитывается ежегодно на основе данных о калорийности угля при заключении договоров на его поставку.

Глава 7. Инвестиции в строительство, реконструкцию и техническое перевооружение

Предложения по инвестированию средств в существующие объекты или инвестиции, предлагаемые для осуществления определенными организациями, утверждаются в схеме теплоснабжения только при наличии согласия лиц, владеющих на праве собственности или ином законном праве данными объектами, или соответствующих организаций

на реализацию инвестиционных проектов и наличию утвержденных инвестиционных проектов.

Мероприятия по модернизации котельной № 3 с. Соловьиха приведены в таблице 28.

Таблица 28

Мероприятия по модернизации котельной № 3 с. Соловьиха

№ π/π	Система тепло- снабжения	Мероприятия по модернизации	Стоимость реализации мероприятия, тыс.руб.	Год реа- лизации мероприя- тия
1	Котельная № 3 с. Соловьиха	Замена котельного оборудования на энергоэффективное. Замена котла KBp-0,63 на котел KBp-0,4	500	2023

Глава 8. Решение об определении единой теплоснабжающей организации

В качестве единой теплоснабжающей организации определяется Муниципальное предприятие «Многоотраслевое объединение коммунального хозяйства» как организация, владеющая теплогенерирующим и теплопередающим оборудованием на праве хозяйственного ведения в МО Соловьихинский сельсовет.

Глава 9. Решения о распределении тепловой нагрузки между источниками тепловой энергии

Источник тепловой энергии работает автономно, является единственным источником централизованного теплоснабжения на территории МО Соловьихинский сельсовет и исключает оптимизацию в целях перетоков и перераспределения нагрузок.

Глава 10. Решения по бесхозяйным сетям

Бесхозяйные сети отсутствуют.

Библиография

- 1. Федеральный закон РФ от 27 июля 2010 года № 190-ФЗ «О теплоснабжении».
- 2. Федеральный закон РФ от 23 ноября 2009 года № 261-Ф3 «Об энергосбережении и о повышении энергетической эффективности».
- 3. Постановление Правительства РФ от 22 февраля 2012 года № 154 «О требованиях к схемам теплоснабжения, порядку их разработки и утверждения».
- 4. Приказ Минрегиона России от 26 июля 2013 года № 310 «Об утверждении Методических указаний по анализу показателей, используемых для оценки надежности систем теплоснабжения».
- 5. Методические рекомендации по разработке схем теплоснабжения, утвержденные совместным Приказом Минэнерго России и Минрегиона России от 29 декабря 2012 года № 565/667 «Об утверждении методических рекомендаций по разработке схем теплоснабжения».
- 6. Правила технической эксплуатации тепловых энергоустановок, утвержденные Приказом Минэнерго РФ от 24 марта 2003 года № 115 «Об утверждении Правил технической эксплуатации тепловых энергоустановок».
- 7. Техническое задание на разработку схемы теплоснабжения МО Соловьихинский сельсовет Петропавловского района Алтайского края.
- 8. Методика определения нормативных значений показателей функционирования водяных тепловых сетей коммунального теплоснабжения. Москва. Роскоммунэнерго.
- 9. Методические рекомендации по регулированию отношений между энергоснабжающей организацией и потребителями. /Под общей редакцией Б.П. Варнавского/. М.: Новости теплоснабжения, 2003.
- 10. Манюк В.В. и др. Наладка и эксплуатация водяных тепловых сетей. Справочник Москва., 1988 год.
- 11. Самойлов Е.В. Диагностика трубопроводов тепловых сетей как альтернатива летним опрессовкам. ЖКХ, Журнал руководителя и гл. бухгалтера.

12. Справочни	Николаев А. <i>А</i> ик Москва 1965	а. Справочник г 5 год.	іроектировщика	Проектирование	тепловых сетей.